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ABSTRACT Microscopic interpretation of stained smears is one of the most operator-
dependent and time-intensive activities in the clinical microbiology laboratory. Here,
we investigated application of an automated image acquisition and convolutional
neural network (CNN)-based approach for automated Gram stain classification. Using
an automated microscopy platform, uncoverslipped slides were scanned with a 40X
dry objective, generating images of sufficient resolution for interpretation. We col-
lected 25,488 images from positive blood culture Gram stains prepared during rou-
tine clinical workup. These images were used to generate 100,213 crops containing
Gram-positive cocci in clusters, Gram-positive cocci in chains/pairs, Gram-negative
rods, or background (no cells). These categories were targeted for proof-of-concept
development as they are associated with the majority of bloodstream infections. Our
CNN model achieved a classification accuracy of 94.9% on a test set of image crops.
Receiver operating characteristic (ROC) curve analysis indicated a robust ability to
differentiate between categories with an area under the curve of >0.98 for each. Af-
ter training and validation, we applied the classification algorithm to new images
collected from 189 whole slides without human intervention. Sensitivity and specific-
ity were 98.4% and 75.0% for Gram-positive cocci in chains and pairs, 93.2% and
97.2% for Gram-positive cocci in clusters, and 96.3% and 98.1% for Gram-negative
rods. Taken together, our data support a proof of concept for a fully automated
classification methodology for blood-culture Gram stains. Importantly, the algorithm
was highly adept at identifying image crops with organisms and could be used to
present prescreened, classified crops to technologists to accelerate smear review.
This concept could potentially be extended to all Gram stain interpretive activities in
the clinical laboratory.
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stain interpretation remains labor and time intensive and highly operator depen-
dent. With consolidation of hospital systems, increasing workloads, and the poten-
tial unavailability of highly trained microbiologists on site (8), automated image
collection paired with computational interpretation of Gram stains to augment and
complement manual testing would provide benefit. However, there has been a
dearth of scientific exploration in this area, and several technical difficulties need to
be overcome.

Practically, automated Gram stain interpretation requires both automated slide
imaging and automated image analysis. Although automated slide scanners and
microscopes are being used in anatomic pathology, for example, in telepathology (9),
their application in clinical microbiology has been limited based on several technical
challenges. First, Gram-stained slides are typically read using 100X objectives, greatly
complicating image acquisition due to the need for addition of oil during scanning.
Second, microbiology smear material can adequately be imaged only in a very narrow
field of focus, a challenge for existing slide scanners. Third, Gram-stained slides exhibit
ubiquitous and highly variable background staining. This background may cause
autofocus algorithms to target areas that either are devoid of bacteria or miss the
appropriate focal plane entirely. Image analysis to identify Gram stain characteristics
presents separate hurdles. Importantly, background and staining artifacts, both fairly
ubiquitous, often mimic the shape and color of bacterial cells. Therefore, algorithms
relying on color intensity thresholding and shape detection provide suboptimal accu-
racy.

Here, we provide a proof of concept for automated, deep-learning-based Gram stain
analysis. The major conceptual and technical innovations were 2-fold. First, we devel-
oped an imaging protocol using an automated slide imaging platform equipped with
a 40X air objective to collect highly resolved data from Gram-stained blood culture
slides. Second, image data were used to train a convolutional neural network (CNN)-
based model to recognize morphologies representing the most common agents
causing BSI: Gram-negative rods, Gram-positive cocci in clusters, and Gram-positive
cocci in pairs or chains (1). CNNs are modeled based on the organization of neurons
within the mammalian visual cortex and were applied here based on their ability to
excel in image recognition tasks without requiring time-intensive selective feature
extraction by humans (10). Our trained model was subsequently evaluated for accuracy
in comparison to manual classification.

MATERIALS AND METHODS

Slide collection and manual slide classification. A total of 468 deidentified Gram-stained slides
from positive blood cultures were collected from the clinical microbiology laboratory at Beth Israel
Deaconess Medical Center between April and July 2017 under an institutional review board (IRB)-
approved protocol. Slides were prepared during the course of normal clinical workup. No preselection of
organism identity, organism abundance, or staining quality was performed prior to collection. Positive
blood culture broth Gram stains included those prepared from both nonlytic BD Bactec standard aerobic
medium (n = 232) and lytic BD Bactec lytic anaerobic medium (n = 196) (BD, Sparks, MD).

All slides were imaged without coverslips using a MetaFer Slide Scanning and Imaging platform
(MetaSystems Group, Inc., Newton, MA) with a 140-slide-capacity automated slide loader equipped with
a x40 magnification Plan-Neofluar objective (Zeiss, Oberkochen, Germany) (0.75 numerical aperture). For
each slide, 54 images were collected from defined positions spanning the entirety of the slide. The first
279 slides collected were used in training, validation, and evaluation of our deep-learning model. The
remaining 189 slides were classified manually as Gram-negative rods, Gram-positive chains/pairs, or
Gram-positive clusters using a Nikon Labophot 2 microscope (Nikon Inc., Tokyo, Japan) equipped with
a 100X oil objective. Results were recorded for later use in evaluation of our whole-slide classification
algorithm.

Training a deep convolutional neural network. A training data set consisting of 146-by-146-pixel
image crops was generated manually with the assistance of a custom Python script. The script allowed
crop selection, classification, and file archiving with a single mouse click, allowing large numbers of
annotated crops to be saved in a short period of time in a manner directly accessible to the deep-
learning training program. Each crop was assigned to one of four classifications: Gram-positive cocci in
pairs or chains, Gram-positive cocci in clusters, Gram-negative rods, or background (no cells). Prior to
training, the data set was randomly divided into three subsets: 70% of image crops were used to train
the model, 10% were reserved for hold-out validation during model training, and 20% were reserved for
testing to evaluate model performance after completion of training. We used a transfer learning
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technique based on the Inception v3 convolutional neural network (CNN) architecture pretrained on the
ImageNet Large Scale Visual Recognition Competition (ILSVRC) 2012 image database (11). We used the
Python language (version 3.5) and the TensorFlow library (12) (version 1.0.1) to retrain the final layer of
the model using a custom graphical user interface (GUI) controlling a modified script (“retrain.py”) found
in the TensorFlow GitHub repository (12, 13). Training was performed using mini-batch gradient descent
(batch size, 200) with Nesterov momentum (momentum = 0.9) (14) and cross entropy as the loss
function (15). The initial learning rate was 0.001 and decayed exponentially at a rate of 0.99 per epoch.
The output layer was a 4-way softmax classification which assigned probabilities to each of the four
categories described above.

Analysis of model performance on a per-crop basis. Using our trained CNN, we evaluated model
performance on a per-image-crop basis using an evaluation set of 1,000 manually selected crops from
each class (total crops = 4,000), all of which were independent of the training, validation, and testing
data sets. For each category, true positives were defined as crops correctly classified as the category of
interest; false positives were defined as crops that were incorrectly classified as the category of interest;
true negatives were defined as crops correctly classified as a category other than the category of interest;
and false negatives were defined as crops incorrectly classified as a category other than the category of
interest. Sensitivity and specificity were modeled as receiver operating characteristic (ROC) curves for
each classification label by adjusting the softmax classification thresholds required for positivity. Sensi-
tivity was defined as true positive/(true positive + false negative). Specificity was defined as true
negative/(true negative + false positive). Values for area under the ROC curve (AUC) were calculated for
each label using the trapezium rule as implemented in the scipy library (16). ROC curves were visualized
using the matplotlib library (17).

Development of whole-slide classification algorithm. False-positive rates for automatically
cropped images containing only background were determined by analysis of 350 whole images from 40
different slides. Images contained no visible cells and were independent of the training, validation,
testing, and evaluation data sets. Each image was automatically segmented into 192 nonoverlapping
crops of 146 by 146 pixels using a custom Python script (total crops = 67,200) and classified with our
trained CNN using a stringent cutoff for positivity (cutoff = 0.99). If no label achieved a probability
greater than or equal to the cutoff, the associated crop was called background. False-positive rates were
recorded for each classification label.

Whole-slide classification. Using the automated imaging protocol outlined in the “Automated
image collection” section, we evaluated whole-slide classification accuracy using images collected from
189 slides which were previously manually classified (outlined in the “slide collection and manual slide
classification” section). For each slide, a custom Python script was employed to automatically divide each
image among the 54 images collected from predefined locations into 192 crops of 146 by 146 pixels.
Each crop was evaluated by our trained deep-learning model, and probabilities were assigned to each
category (Gram-negative rods, Gram-positive chains/pairs, Gram-positive clusters, or background) with a
stringent cutoff for classification (cutoff = 0.99). If no label met the classification cutoff, the crop was
classified as background.

After classification of all crops from a slide, the category corresponding to the greatest number of
predicted crops was selected; however, the section was performed only if the number of crops in the
selected category exceeded the number of expected false positives (calculated as described in the
“Development of whole-slide classification algorithm” section). If none of the three label categories
representing organisms were selected based on these criteria, the slide was classified as background. All
results were recorded and used to construct a confusion matrix tabulation per convention in the
deep-learning field (18). Whole-slide sensitivity and specificity were defined and calculated as described
in the “Analysis of model performance on a per-crop basis” section. Classification accuracy levels for
slides from aerobic or anaerobic bottles were compared using Fisher's exact test, with significance
defined as a P value of <0.05 (JMP Pro version 13.0).

RESULTS

Slide collection and manual classification. Blood culture Gram stain slides pre-
pared manually during the course of normal laboratory operation were used for
analysis. Slides were selected based on the presence of any of the three most common
morphotypes observed in bloodstream infection: Gram-positive cocci in clusters, Gram-
positive cocci in pairs and chains, and Gram-negative rods. Less-common morphotypes
(e.g., Gram-positive rods or yeast) and polymicrobial infections were excluded. To
capture real-world variability, slides were not prescreened for suitability for automated
microscopy or deep learning and had characteristic slide-to-slide variability in staining
intensity, staining artifacts, and sample distribution. We anticipated that inherent
variability would pose a real-world challenge to slide classification models.

Automated image collection. CNN-based deep-learning models require large data
sets for training, typically at least on the order of thousands of images (and ideally at
least an order of magnitude more). Therefore, an automated microscopy image acqui-
sition strategy was used. We performed image acquisition on a MetaFer Slide Scanning
and Imaging platform (MetaSystems Group, Inc., Newton, MA) based on a robust Gram
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FIG 1 Representative image collected using our automated imaging protocol. This image shows several
features characteristic of blood culture Gram stains, including (A) an area of intense background staining,
(B) an artifact from stain crystallization, (C) diffuse background staining, and (D and E) individually
resolved Gram-negative rods with (D) high contrast and (E) low contrast compared to background.

stain-compatible autofocus system, ability to sample multiple distributed positions on
a slide to account for variations in specimen distribution, and automated slide loading
capability to enable high-throughput slide scanning.

Clinically, Gram stains are read under oil immersion. However, semicontinuous
addition of oil during automated microscopy was undesirable. In preliminary experi-
ments performed with slides that were not coverslipped (data not shown), we deter-
mined that the 40X dry objective provided sufficient resolution for machine learning
applications based on our prior experience (19). Therefore, we selected use of the 40X
air objective for image acquisition, thus avoiding the requirement for oil immersion and
allowing us to capture a larger field of view in each image.

Deep convolutional neural network training. For CNN training, a total of 25,488
images were automatically collected from distributed locations on 180 slides. A repre-
sentative image is shown in Fig. 1. This image demonstrates features typical of blood
culture Gram stain smears, including (A) intense background staining; (B) a stain
crystallization artifact; (C) diffuse background staining; (D) individually resolvable, high-
contrast Gram-negative cells; and (E) individually resolvable, low-contrast Gram-
negative cells. Of note, ubiquitous background material was often similar in color,
intensity, and/or shape to bacterial cells.

Highly experienced medical technologists can readily differentiate bacteria from this
background. However, it is prohibitively difficult to manually define computational
rules for Gram stain classification that would adequately distinguish signal from noise
in highly variable Gram stain preparations. Therefore, we chose instead to use a
deep-learning approach, more specifically, a CNN, for image analysis. CNNs do not
interpret raw images directly. Rather, they consist of a number of layers, each of which
convolutes regions of the image to detect specific features. During each step of the
learning process, a subset of images is presented to the network, allowing function
parameters to be changed such that the CNN identifies features important for classi-
fication based on optimization of output accuracy. The final model is defined by a set
of weights and biases that control the flow of information through the network such
that the most discriminatory features in the images are used for classification.

Each CNN model has a unique architecture that differs in organization, function, and
number of convolutional layers (10). The model used in our analysis, Inception v3, has
previously been shown to perform robustly in complex image classification tasks,
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FIG 2 CNN model training results. (A) Training and validation accuracy increased exponentially, plateauing at ~95%. There
was no observable difference in the data with respect to training and validation accuracy, indicating negligible overfitting
during training. (B) Cross entropy is a metric used for comparing model predictions to observed data. Lower cross entropy
values indicate a better fit of the model to the data. During training, we observed that cross entropy decreased to a final
value of ~0.1. Cross entropy plateaued at approximately 12,000 training iterations, indicating that additional learning was
not possible without increasing the number of input images, a goal of future work.

including accurate classification of 1,000 different objects (11). The Inception v3 model
is composed of a series of small convolutional networks termed “inception modules”
and was designed to be less computationally intensive than comparable networks (20).
Nevertheless, it is still a highly complex model requiring weeks to train even with
state-of-the-art computational infrastructure (11). However, training the entire network
is not always necessary. Many image classification tasks can be addressed using
precomputed parameters from a network trained to classify an unrelated image set, a
method called transfer learning (21). To this end, we used an Inception v3 model
previously trained to recognize 1,000 different image classes from the 2012 ImageNet
Large Scale Visual Recognition Competition data set (22) and retrained the final layer
to identify our Gram stain categories of interest.

From an image analysis perspective, blood culture Gram stains are mostly back-
ground. This excessive background increases the likelihood that a CNN will learn
features during training that are unrelated to bacterial Gram stain classification. This is
termed “overfitting” and results in a model with high accuracy in classifying images on
which it was trained (the training set) but with poor accuracy when presented with an
independent validation set. Therefore, we enriched the training data through use of
selected image crops rather than whole-slide images. A training crop selection tool was
created using the Python programming language which allowed the trainer to select
areas of an image containing bacteria with a single mouse click. This allowed us to train
our model on regions of images containing bacteria without inclusion of excessive
background.

For model training (Fig. 2), we used our training crop selection tool to generate a
total of 100,213 manually classified image crops from 180 slides. Training accuracy and
validation accuracy were indistinguishable (Fig. 2A), implying a robust ability of the
model to evaluate data on which it had not previously been trained. It further
confirmed success in minimizing overfitting. During training, predictions made by our
model were compared to the observed data, and differences between these values
were quantified using a metric called cross entropy (15). In practice, low cross entropy
indicates that the model fits the observed data well. Cross entropy decreased during
training and plateaued after 12,000 iterations (Fig. 2B). Additional training iterations
beyond what is shown in Fig. 2 did not reduce cross entropy and therefore did not
improve model accuracy.

Evaluation of model performance on a per-crop basis. Our CNN outputs the
relative probabilities that an image crop belongs to each of four categories of training
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FIG 3 Receiver operating characteristic (ROC) curve. Curves were generated for each category by varying
the threshold for positivity. Values corresponding to the area under the curve are indicated in
parentheses.

data, specifically, Gram-positive cocci in chains/pairs, Gram-positive cocci in clusters,
Gram-negative rods, and background (i.e., no bacteria) (23). Per convention (10), the
class with the highest probability is assigned as the predicted class. Using this method,
we tested our model using a test set of image crops not used during model training
and achieved a classification accuracy of 94.9%, providing an initial estimate of model
performance. However, this metric may be impacted by the fact that the test set was
not wholly independent of the training set, as it might still have contained crops from
the same slide or images used in developing the training and validation sets.

Therefore, to rigorously evaluate the ability of our model to generalize to an entirely
independent data set, we evaluated performance on an evaluation set of 4,000 man-
ually classified image crops (n = 1,000 crops per class) from 59 slides that were not a
component of the training, validation, or test sets. Here, we achieved a similar overall
93.1% image crop classification accuracy. Importantly, the evaluation set also allowed
us to calculate sensitivity and specificity on a per-category basis. Sensitivity and
specificity were 96.6% and 99.4% for Gram-positive clusters, 97.7% and 99.0% for
Gram-positive chains, 80.1% and 99.4% for Gram-negative rods, and 97.4% and 93.0%
for background, respectively. Calculation of the area under the receiver operating
characteristic (ROC) curve (AUC) for each category (Fig. 3) further indicated a robust
ability to differentiate between categories (AUC > 0.98 for all).

Development of whole-slide classification algorithm. To this point, we per-
formed classifications on manually selected cropped images based on category assign-
ment using the highest probability output from the classification. However, we hy-
pothesized that it was not the optimal way to interpret our results for whole-slide
classification. Specifically, a whole-slide classification task differs from our evaluation
experiments in that it necessarily examines a much larger number of crops that are not
preselected and consist only of background. Given that background may simulate
bacterial cells (Fig. 1), we expected a greater likelihood of false-positive calls.

To test this possibility during whole-slide classification, we decided to set a very
stringent probability cutoff (0.99) for category calls to minimize false positives at the
image crop level and maximize specificity at the whole-slide level. Using this stringent
cutoff, 65.6% of evaluated crops had a prediction with confidence of =0.99, and 99.6%
of these were correctly classified. The classification accuracy levels were 99.9% for
Gram-positive clusters, 100% for Gram-positive chains, and 97.4% for Gram-negative
rods.

To investigate how this stringent cutoff would impact false-positive rates on a
per-slide basis when applied to images cropped automatically, we collected 350 whole
images containing no visible cells and that were not part of the training, validation, or
evaluation data sets. Images were cropped into 192 nonoverlapping crops (n = 67,200)
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FIG 4 Automatically classified crops. Each image represents a correctly classified crop that was automatically extracted from an image during whole-slide
classification. Rows of images represent (A) background, (B) Gram-positive chains/pairs, (C) Gram-positive clusters, or (D) Gram-negative rods. One practical
application of the platform would be to present such organism-enriched images to a technologist to expedite smear review.

using a custom Python script and evaluated using our trained model with the classi-
fication threshold described above. For each category, false-positive rates were
=0.006% on a per-image crop basis. On the basis of an assumed normal distribution of
false-positive calls, we set a minimal threshold for slide classification of 6 positive crops
per category in order to achieve the desired =0.1% false-positive whole-slide classifi-
cation rate.

Our whole-slide classification algorithm was then tested on 189 slides that had been
previously classified manually by a microbiologist and that were not components of the
training, validation, test, or evaluation sets. Each of 54 images scanned per slide was
divided into 192 nonoverlapping 146-by-146 pixel crops and evaluated using the
parameters described above for a total of 10,368 crops per slide. We first qualitatively
evaluated performance on automated image crops. This was achieved by writing a
Python program (called “TA” for technologist assist) that would output images corre-
sponding to crop calls by the CNN, allowing specific review. Figure 4 shows examples
of correctly classified image crops corresponding to each of the four classification
labels.

We then quantitatively evaluated our whole-slide classification accuracy in compar-
ison to manual classification by constructing a table that shows each slide’s manual
classification and corresponding automated prediction (Table 1). We found that bac-
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TABLE 1 Confusion matrix of whole-slide classification results

Predicted classification (n)

Gram Gram-positive Gram-positive
Human classification negative pairs or chains clusters Background % sensitivity (Cl)@ % specificity (Cl)@
Gram negative 51 1 0 17 98.1 (94.3-100) 96.3 (93.7-98.9)
Gram-positive pairs or chains 3 27 6 4 75.0 (60.9-89.0) 98.4 (90.8-100)
Gram-positive clusters 1 1 70 8 97.2 (93.4-100) 93.2 (89.7-96.6)

aData were determined based on slides where bacteria were detected. Cl, 95% confidence interval.

teria were detected in 84.7% (n = 160) of slides by our automated algorithm. For those
slides where bacteria were detected, we calculated classification accuracy, sensitivity,
and specificity. Classification accuracy was 92.5% across all categories. Sensitivity was
>97% for Gram-negative rods and Gram-positive clusters. Sensitivity was lower for
Gram-positive chains, largely owing to misclassifications as Gram-positive clusters
across a relatively lower overall number of slides (n = 40). Further, manual inspection
of Gram-positive chains misclassified as clusters revealed that the data represented by
these slides were somewhat ambiguous owing to substantial clumping of cells. Spec-
ificity for Gram-positive chains and Gram-negative rods was >96%. Specificity was
slightly lower (93.2%) for Gram-positive clusters, again owing to misclassification of
Gram-positive chains as clusters. Despite qualitative differences in background staining,
the levels of accuracy of data based on slides from aerobic bottles (88.8%) or anaerobic
bottles (92.9%) were not significantly different (Fisher’s exact test, P > 0.05).

Overall, the most common error was misclassification of slides as background,
representing 70.7% (n = 29) of all misclassifications. On manual review of images from
these slides, we found that 44.8% (n = 13) had insufficient crops with bacteria to make
a positive call based on our preestablished thresholds. We found that an additional
48.3% (n = 14) had organisms that either were out of focus or had very low contrast,
and of these, the majority (78.6%, n = 11) contained Gram-negative organisms, as
expected based on superficial similarity to background material. The remaining 6.9%
(n = 2) of slides contained highly elongated Gram-negative rods or minute Gram-
negative coccobacilli. Neither of those morphologies was a component of our training
set. Gram stain category miscalls (n = 5), other than conflation of Gram-positive cocci
in chains and Gram-positive cocci in clusters, were related to a combination of poor
representation of the causal organism in crops and excessive background artifact.

DISCUSSION

The Gram stain smear provides the first microbiological data to guide treatment for
BSI. Notably, earlier results are correlated with positive patient outcome (6). However,
interpretation of Gram stains is time intensive and strongly operator dependent,
requiring a skilled technologist for interpretation. Concerningly, the most recent survey
from the American Society for Clinical Pathology indicates that, as of 2014, trained
microbiology technologist jobs in the United States had a vacancy rate of ~9% and
nearly 20% of technologists planned to retire in the next 5 years (8). This finding
highlights the need for development of solutions to make the current work force more
efficient. However, there has been relatively little progress in automation of tests
requiring subjective interpretation such as the Gram stain.

Lack of progress in this area is related to technical issues with automated micros-
copy and need for imaging interpretation algorithms that are robust with respect to
identifying rare organisms in the presence of variable background. Here, we demon-
strated that the MetaFer Slide Scanning and Imaging platform provides a robust
automated image acquisition system, capable of providing sufficient resolution for
Gram stain analysis using a 40X dry objective. For such analysis, we chose to use a CNN
based on its ability to excel in image analysis tasks with minimal human intervention.
A summary of workflow for implementation, testing, and validation of our platform is
provided in Fig. 5.
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FIG 5 Summary of CNN training and evaluation. Prior to CNN training, we collected images using an
automated microscopy protocol (image example shown in Fig. 1). For CNN training and preliminary
testing, 100,213 image crops were manually selected, classified, and randomly partitioned into training,
validation, and test sets. The sizes of the boxes correlate to the relative sizes of the data sets. During
iterative model training, accuracy was monitored using the training and validation sets (Fig. 2). After
completion of training, model accuracy was initially assessed by quantification of accuracy on the test set
(as discussed in the text). However, the test set image crops came from the same slides as the training
set. We therefore further assessed performance using a completely independent evaluation set to obtain
a more reliable, real-world readout of image crop classification accuracy and to generate the data
corresponding to the receiver operating characteristics (ROC) shown in Fig. 3. Finally, we used a second
independent data set of automatically generated image crops from 189 slides to evaluate whole-slide
classification accuracy. Each whole-slide classification was based on aggregate CNN categorizations of all
image crops from a given slide (examples of such crops are shown in Fig. 4). Accuracy was determined
in comparison to manual slide interpretation (Table 1).

This work adds to the examples of successful CNN use in several areas of image-
based diagnostics. These include detection of skin cancer (24); interpretation of echo-
cardiograms (25); and detection of metastatic cancer in lymph nodes (26) in which the
combined contributions of pathologists and a CNN increased sensitivity for diagnosis
(27). A CNN has also previously been used by our group for early prediction of antibiotic
MICs in microscopy-based microdilution assays (19).

Importantly, CNNs improve in performance as more image data are added to the
training set. Unlike other machine learning models, however, training on more data
increases neither the size of a CNN model nor the complexity of model implementation.
Nevertheless, training of an entire CNN model requires substantial computational
infrastructure. Here, we took advantage of an existing trained CNN and retrained its
final layers, a method called transfer learning (21, 24). In this way, we were able to train
and implement our model using a standard office computer containing an Intel Core i7
CPU with 32 GB of RAM with no GPU (graphics processing unit [the computational
workhorse for image analysis]).

Not surprisingly, implementation of the trained CNN for whole-slide analysis using
this computer infrastructure was relatively slow. We therefore piloted whole-slide
classification using a system containing an Nvidia GTX 1070 GPU. Though still under-
powered compared to other currently available GPUs, it improved the whole-slide
classification time by a factor of 6, resulting in a classification time of ~9 min. The best
available GPUs are markedly more powerful than the GTX 1070 and are expected to
provide even better performance (<5 min per slide), not even considering the ability
of CNN algorithms to distribute computations across multiple GPUs.

Overall, we found that our trained model performed well on whole-slide image
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classification. Where cells were detected, we achieved an overall classification accuracy
of 92.5% and a specificity of >93% for all classification labels with no human inter-
vention. The most common classification error from our model was misclassification of
slides containing rare bacteria as background, representing the majority (70.7%) of all
classification errors. In practice, these misclassifications would be flagged for direct
technologist review, making these low-consequence errors. We also note that our
sensitivity and specificity in whole-slide image classification accuracy were modestly
lower than those seen on a per-image-crop basis. This is likely due in part to inclusion
of slides with very few bacteria and therefore a higher propensity for false positives.
Optimization of data collection or slide preparation would likely bring our whole-slide
accuracy close to the per-image-crop accuracy.

Our study had several limitations. As a proof-of-principle examination, we included
only the most common BSI pathogens and omitted several important but less-common
bacterial morphologies, largely due to limitations in the availability of training data.
However, given an appropriate amount of training data, these could easily be incor-
porated into the Inception v3 model, which can distinguish 1,000 different categories;
this is a future goal. Similarly, discrimination of polymicrobial infections could be
incorporated by inclusion of “mixed” categories in our algorithm.

We also recognize that there are several steps that could be taken to improve
classification. Foremost, the number of slides (and therefore the number of image
crops) used for training is relatively modest and could be increased to improve CNN
accuracy. In addition, our whole-slide scanning protocol was based on selecting
predefined positions for imaging that were invariant between slides. This contributed
to inadequate sampling in a significant subset of slides, which we believe was the
greatest contributor to reduction in model accuracy. This hypothesis is supported by
the observation that the misclassified whole-slide calls were typically from slides with
very few bacteria or poor sample spread. Notably, to address this issue, it is possible
with the existing microscope platform to perform an automated rapid scan for areas of
appropriate staining intensity and thereby preselect regions of the slide that are more
likely to have sufficient Gram-stained sample for image acquisition.

Gram stain smear preparation is also expected to have a significant impact on
automated slide imaging. Here, we used slides prepared by technologists during the
course of normal laboratory operation. Slides exhibited a high degree of variability in
smear area, thickness, location, and staining intensity. We anticipate that standardiza-
tion of these variables will improve the ability of an automated microscope to consis-
tently sample microscopic fields with evaluable organisms. Further, use of an auto-
mated Gram stain device for staining would also increase the reproducibility of staining
characteristics and further enhance accuracy. We plan to investigate all of these areas
in the future.

We envision a potential role of our technology in augmenting technologist classi-
fication. Given that manual interpretation of blood culture Gram stains by trained
technologists is very accurate (28-30), our model could be used to enhance produc-
tivity by selectively presenting crops containing bacteria to local or remote technolo-
gists. This would increase the efficiency of classification by sparing the operator the
need to manually locate fields of interest among a preponderance of background. This
would also conceivably reduce technologist read time from minutes to seconds. Upon
further development and intensive algorithm training, the platform could potentially
also be used as a fully automated classification platform with no human intervention.

In the era of laboratory consolidation and limitations in the number of skilled
technologists (8), we believe our system could provide enhanced opportunities for
rapid Gram stain classification at the site of care or during understaffed shifts in
conjunction with later analysis at a central laboratory or day shifts. We further envision
extension of CNN analysis to other smear-based microbiological diagnostics in the
parasitology, mycobacteriology, and mycology laboratories. We believe that this tech-
nology could form the basis of a future diagnostic platform that provides automated
smear classification results and augments capabilities of clinical laboratories.
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